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Abstract. Algebraic multigrid (AMG) is an O(n) solution process for many large sparse linear
systems. A hierarchy of progressively coarser grids is constructed that utilize complementary relax-
ation and interpolation operators. High-energy error is reduced by relaxation, while low-energy error
is mapped to coarse-grid matrices and reduced there. However, large parallel communication costs
often limit parallel scalability. As the multigrid hierarchy is formed, each coarse matrix is formed
through a triple matrix product. The resulting coarse grids often have significantly more nonzeros
per row than the original fine-grid operator, thereby generating high parallel communication costs
associated with sparse matrix-vector multiplication (SpMV) on coarse levels. In this paper, we in-
troduce a method that systematically removes entries in coarse-grid matrices after the hierarchy is
formed, leading to improved communication costs. We sparsify by removing weakly connected or
unimportant entries in the matrix, leading to improved solve time. The main trade-off is that if the
heuristic identifying unimportant entries is used too aggressively, then AMG convergence can suffer.
To counteract this, the original hierarchy is retained, allowing entries to be reintroduced into the
solver hierarchy if convergence is too slow. This enables a balance between communication cost and
convergence, as necessary. In this paper we present new algorithms for reducing communication and
present a number of computational experiments in support.
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1. Introduction. Algebraic multigrid (AMG) [20, 9, 22] is an O(n) linear solver
for standard discretizations of elliptic differential equations [2, 30, 26]. We consider
AMG as a solver for the symmetric, positive definite matrix problem

(1) Ax = b,

with A ∈ Rn×n and x, b ∈ Rn. AMG consists of two phases, a setup and a solve phase.
The setup phase defines a sequence or hierarchy of L coarse-grid and interpolation
operators, A1, . . . , AL and P0, . . . , PL−1 respectively. The solve phase iteratively im-
proves the solution through relaxation and coarse-grid correction.
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The focus of this paper is on the communication complexity of AMG in a dis-
tributed memory, parallel setting. To be clear, we refer to the communication com-
plexity as the time cost of interprocessor communication, while referring to the com-
putational complexity as the time cost of the floating point operations. The complexity
or total complexity is then the cost of the algorithm, combining the communication
and computational complexities.

There is a trade-off between per-iteration complexity and the resulting conver-
gence — this is controlled by the setup phase in AMG. Indeed, more accurate in-
terpolation leads to more entries in P` and this often improves the overall conver-
gence. However, this also leads to more entries in A`+1 through the Galerkin product,
A`+1 = PT` AP`, which is the most common way to form A`+1 in AMG. As we will
see, the number of entries in A`+1 is a good proxy for the complexity of level ` + 1.
In contrast, sparser interpolation and fast coarsening reduce the complexity of a sin-
gle iteration of an AMG cycle through fewer entries in A`+1 and fewer overall AMG
levels, but can lead to a deterioration in convergence [30, 26].

The sparse matrices, A1, . . . , AL, in the multigrid hierarchy are, by design, smaller
in dimension, yet are often more dense as the level increases. As an example of this,
Table 1 shows the properties of a hierarchy for a 3D Poisson problem with a 27-point
finite element stencil on a 100×100×100 grid. Classical AMG (Ruge-Stüben) is used
for this example1. As the problem size decreases on coarse levels, the average number
of nonzero entries per row increases. Here we denote by nnz the number of nonzero
entries in the respective matrix. Figure 1 highlights this example, where we see that
both the density and pattern of nonzeros increase on lower levels in the hierarchy.

level matrix size nonzeros nonzeros per row
` n nnz nnz⁄n

0 1 000 000 26 463 592 26
1 124 984 3 645 644 29
2 23 042 1 466 006 64
3 2991 198 043 66
4 570 32 680 57
5 117 4705 40

Table 1: Matrix properties using classical AMG for a 3D Poisson problem.

In parallel, coarse levels that are more dense correlate with an increase in parallel
communication costs [5]. Figure 2 shows this by plotting the time spent on each
level in an AMG hierarchy during the solve phase. The time grows substantially on
coarse levels, which is attributed to increased communication costs from a decrease
in sparsity. This effect is common in AMG methods; Figure 2 shows two examples.

In this paper we introduce a method for controlling the communication complexity
in AMG. The method increases the sparsity of coarse-grid operators (A`, ` = 1, . . . , L)
by eliminating entries in A`. This results in an improved balance between convergence
and per-iteration complexity in comparison to the standard algorithm. In addition,
we develop an adaptive method which allows nonzero entries to be reintroduced into
the AMG hierarchy, thus recovering convergence if entry elimination is too aggressive.

1See PyAMG [6] using ruge stuben solver(poisson((100,100,100), type=’FE’)) for more de-
tails. Similar results are seen using a 7-point finite difference discretization.
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Level in AMG hierarchy

Fig. 1: Matrix sparsity pattern using classical AMG for three levels in the hierarchy:
` = 3, 4, 5. The full matrix properties are given in Table 1.
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Fig. 2: Left: Time spent on each level of the hierarchy during a single iteration of
classical parallel AMG for a 3D Poisson problem with hypre using Falgout coarsen-
ing [10] and hybrid symmetric Gauss-Seidel relaxation. Right: Repeat experiment,
but using aggressive HMIS coarsening. The total time is much lower; however, the
qualitative feature of expensive coarse levels remains.

In the context of this paper, we define sparsity and density in terms of the average
number of nonzeros per row (or equivalently, the average degree of a node in the
graph of the matrix). In particular, density of a matrix A` of size n` is defined
to be nnz(A`)/n`. The performance of AMG is closely correlated with this metric,
especially communication costs. In addition, note that if a matrix A` is “sparser” or
“denser” under this definition, it is also the case under the more traditional density
metric, nnz(A`)/n

2
` . Another advantage is that this measure yields a meaningful

comparison between matrices of different sizes. For example, a goal of our algorithm
is to generate coarse matrices as close as possible in terms of sparsity structure to the
fine grid matrix.

There are a number of existing approaches to reduce per-iteration communication
complexity at the cost of convergence. Aggressive coarsening, such as HMIS [26] and
PMIS [26], rapidly coarsens each level of the hierarchy, leading to a reduction in both
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the number and the density of coarse operators. While these coarsening strategies
reduce the cost of each iteration or cycle in the AMG solve phase, they do so at
the cost of accuracy, often resulting in reduced convergence. Likewise, interpolation
schemes such as distance-two interpolation [25], improve the convergence for aggressive
coarsening, but also result in an increase in complexity.

Figure 2 shows that the time per level during the solve phase is reduced in compar-
ison to standard coarsening, even though the same number of processes and problem
size per core are used. The use of HMIS coarsening is the only difference in problem
settings between these two runs. Regardless, while aggressive coarsening may reduce
the total work required during an iteration of AMG, the problem of expensive coarse
levels still persists.

Another strategy for reducing communication complexity in AMG consists of sys-
tematically improving sparsity in the interpolation operators [25]. Removing nonzeros
from the interpolation operators reduces the complexity of the coarse-grid operators,
however this process can also have an unpredictable impact on coarse-level perfor-
mance if used too aggressively. Sparsity can alternatively be improved by considering
a sparse approximation to the transformation that relates the fine-grid matrix A
purely injected to the coarse grid with the less sparse but generally more desirable
Galerkin coarse-grid matrix. This transformation along with the injected matrix A go
on to form a coarse grid that is sparser than Galerkin but still yields good multigrid
convergence for the several cases [8].

The typical approach to building coarse-grid operators, A`, is to form the Galerkin
product with the interpolation operator: A`+1 = PT` A`P`. This ensures a projection
in the coarse-grid correction process and a guarantee on the reduction in error in each
iteration of the AMG solve phase (although the factor by which the error is reduced
may be small for a poorly converging method). Yet it is the triple matrix product in
the Galerkin construction that leads to a growth in the number of nonzeros in coarse-
grid matrices. As such, there are several approaches to constructing coarse operators
that do not use a Galerkin product and are termed non-Galerkin methods. These
methods have been formed in a classical AMG setting [13] and also in a smoothed
aggregation [27] context. In general, these methods selectively remove entries from
coarse-grid operators, reducing the complexity of the multigrid cycle. Assuming the
appropriate entries are removed from coarse-grid operators, the result is a reduction
in complexity with little impact on convergence.

An alternative to limiting communication complexity is to directly determine the
coarse-grid stencil, an approach used in geometric multigrid. For instance, simply
rediscretizing the PDE on a coarse-level results in the same stencil pattern as for the
original finest-grid operator, thus avoiding any increase in the number of nonzeros in
coarse-grid matrices. More sophisticated approaches combine geometric and algebraic
information and include BoxMG [11, 12] and PFMG [4], where a stencil-based coarse-
grid operator is built. Additionally, collocation coarse grids (CCA) [29] have been used
on coarse levels to effectively limit the number of nonzeros. Yet, all these methods rely
on geometric properties of the problem being solved. One exception is the extension of
collocation coarse grids to algebraic multigrid (ACCA) [28], which has shown similar
performance to smoothed aggregation AMG.

Another approach is to consider sparsification of the graph of the sparse matrix.
There are several major approaches, grouped by how the difference between the orig-
inal graph and the sparsified graph is measured. One major approach finds graphs
where the weight of cuts in the original graph and the sparsified graph are close [14].
In another, called spectral sparsification [23, 24], edges of the graph are removed if the
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resulting graph Laplacian remains spectrally close to the original. Sparsification of
graphs has been an active area of research recently [18], concentrating on developing
near linear-time algorithms for the sparsification. While the immediate impact on the
coarse-level matrices in a multigrid hierarchy has not been studied, this could point
to an additional improvement to the methods presented in this paper.

The approach developed in this paper is to form a coarse-level operator that does
not satisfy a Galerkin product by modifying existing hierarchies. The novel benefit of
the proposed approach is that it is applicable to most AMG methods, requires no ge-
ometric information, and provides a mechanism for recovery if the dropping heuristic
is chosen too aggressively (see Section 6). This paper is outlined as follows. Section 2
describes standard algebraic multigrid as well as the method introduced in [13]. Sec-
tion 3 introduces two new methods for reducing the communication complexity of
AMG: Sparse Galerkin and Hybrid Galerkin. Parallel performance models for these
methods are described in Section 4, and the parallel results are displayed in Section 5.
An adaptive method for controlling the trade-off between communication complex-
ity and convergence is described in Section 6. Finally, Section 7 makes concluding
remarks.

2. Algebraic Multigrid. In this section we detail the AMG setup and solve
phases. We let the fine-grid operator A be denoted with a subscript as A0.

Algorithm 1 describes the setup phase and begins with strength, which iden-
tifies the strongly connected edges2 in the graph of A` to construct the strength-of-
connection matrix S`. From this, P` is built in interpolation to interpolate vectors
from level `+ 1 to level `, with the goal to accurately interpolate (smooth) error not
sufficiently reduced by relaxation. For classical AMG, interpolation first forms a
disjoint splitting of the fine-level index set {1, . . . , n} = C ∪ F , where C is the set of
indices on the coarse level and where F is the set of indices for variables that reside
only on the fine level. The size of the coarse grid is then given by n`+1 = |C|, and an
interpolation operator, P` : Rn`+1 → Rn` , is constructed using S` and A` to compute
sparse interpolation formulas that are accurate for algebraically smooth functions.
Finally, the coarse-grid operator is created through a Galerkin triple-matrix product,
A`+1 = PT` A`P`. In a two-level setting, this ensures the desirable property that the
coarse-grid correction process I − P`A−1

`+1P
T
` A` is an A`-orthogonal projection that

ensures the best coarse-grid correction of the error in the range of interpolation (in the
A` norm). When an approximation to A`+1 is introduced, this projection property is
lost, leading to a possible deterioration in convergence.

The density of each coarse-grid operator A`+1 depends on that of the interpolation
operator P`. Even interpolation operators with modest numbers of nonzeros typically
lead to increasingly dense coarse-grid operators [13, 15]. Algorithm 1 addresses this
with the optional step sparsify, which triggers the sparsification steps developed
in this paper. The approach [13] also fits within this framework, which we detail in
Section 2.1.

The solve phase of AMG, described in Algorithm 2 as a V-cycle, iteratively im-
proves an initial guess x0 through the use of the residual equation A0e0 = r0, where
e0 and r0 are the fine-grid error and residual, respectively. High energy error in the
approximate solution is reduced through relaxation in relax — e.g. Jacobi or Gauss-

2A degree-of-freedom i is strongly connected to j if algebraically smooth error (error not effec-
tively reduced by relaxation) varies slowly between them. Strength information critically informs
AMG how to coarsen [3] and how to interpolate [22]; while a variety of strength measures abound [21],
the standard strength measure is sufficient for the problems tested.
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Algorithm 1: amg setup

Input: A0: fine-grid operator
max size: threshold for max size of coarsest problem
nongalerkin: (optional) non-Galerkin method
γ1, γ2, . . . (optional) drop tolerances for each level

Output: A1, . . . , AL,
P0, . . . , PL−1

while size(A`) > max size
S` = strength(A`) {Strength-of-connection of edges}

P` = interpolation(A`, S`) {Construct interpolation and injection}

A`+1 = PT` A`P` {Galerkin product}

if nongalerkin {(optional) described in Section 2.1}

Â`+1 = sparsify(A`+1, A`, P`, S`, γ`) {Remove nonzeros in A`+1}

A`+1 = Â`+1

Seidel. The remaining error is reduced through coarse-grid correction: a combination
of restricting the residual equation to a coarser level, followed by interpolating and
correcting with the resulting approximate error. The coarsest-grid equation is com-
puted with solve, using a direct solution method.

Algorithm 2: amg solve

Input: x0: fine-level initial guess
b0: fine-level right-hand side
A0, . . . , AL
P0, . . . , PL−1

Output: x0, fine-level approximation

for ` = 0, . . . , L− 1 do
relax(A`, x`, b`, ν1) {Pre-smooth ν1 times}

b`+1 = PT` (b` −A`x`) {Restrict residual}

xL = solve(AL, bL) {Coarsest-level direct solve}

for ` = L− 1, . . . , 0 do
x` = x` + P`x`+1 {interpolate and correct}

relax(A`, x`, b`, ν2) {Post-smooth ν2 times}

The dominant computational kernel in Algorithm 2 is the sparse matrix-vector
(SpMV) product, found in relax and interpolation/restriction. Typically relaxation
dominates since A` is larger and denser than P`. Thus, the performance on level ` of
the solve phase depends strongly on the performance of a single SpMV with A`.

When performing parallel sparse matrix operations, a matrix A is distributed
evenly across processes using a contiguous, row-wise partition, as shown in Figure 3.
The local portion of the matrix is split into two groups: the diagonal block, containing
all columns of A that correspond to local elements of the vector; and the off-diagonal
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block, corresponding to elements of the vector that are stored on other processes. For
a SpMV, all off-process elements in the vector that correspond to matrix nonzeros
must be communicated. Therefore, the density of a matrix contributes to the cost of
communication complexity in the SpMV operation. This implies that the less sparse
AMG coarse levels yield large communication costs and, often, an inefficient solve
phase [13, 15]. 






processor k

on-diagonal

off-diagonal

A v

Fig. 3: Matrix A and vector v distributed across processes in a row-wise partition.

2.1. Method of non-Galerkin coarse grids. In this section we introduce
terminology related to [13], which we term the method of non-Galerkin coarse grids
or non-Galerkin for the remainder of the paper. In this case, coarse-level operators
do not satisfy the Galerkin relationship where A`+1 = PT` A`P` for each level `. The
coarse-grid operators are first formed through the Galerkin product, followed by a
sparsification step that generates Â`+1 — see the call to sparsify in Algorithm 1. As
motivated in the previous section, fewer nonzeros in the coarse-grid operator reduce
the communication requirements. The sparser matrix Â`+1 replaces A`+1 and is
then used when forming the remaining levels of the hierarchy, creating a dependency
between Â`+1 and all successive levels as shown in Figures 6a and 6b. Thus, this
approach does not preserve a coarse-grid correction corresponding to an A-orthogonal
projection, as described in Section 2.

In the following we use edges(A), for a sparse matrix A, to represent the set
of edges in the graph of A. That is, edges(A) = {(i, j) such thatAi,j 6= 0}, where

Ai,j = (A)i,j is the (i, j)
th

entry of A. In addition, we denote P̂ ` as the injection
interpolation operator that injects from level `+ 1 to the C points on level ` so that
P̂ ` is defined as the identity over the coarse points, leaving P̂ ` zero over the F -points.

The sparsify method for reducing the nonzeros in a matrix is described in Al-
gorithm 3, where the level subscripts are dropped for readability. The algorithm
selectively removes small entries outside a minimal sparsity pattern3 given by M`

where edges(M`) = edges(P̂T` A`P` + PT` A`P̂ `). For a given tolerance γ, any entry
Ai,j with (i, j) /∈M and |Ai,j | < γmaxk 6=i |Ai,k| is considered insignificant and is re-
moved. When entry Ai,j is removed, the value of Ai,j is lumped to other entries that
are strongly connected to Ai,j , and Ai,j is set to zero. This reduces the per-iteration
communication complexity and heuristically targets spectral equivalence between the
sparsified operator and the Galerkin operator [13, 27].

3The goal of the minimal sparsity pattern is to maintain, at the minimum, a stencil as wide for
the coarse grid as exists for the fine grid. This is a critical heuristic for achieving spectral equivalence
between the sparsified operator and the Galerkin operator. The current M achieves this in many
cases. It is possible in some cases to reduce M further. See [13] for more details.
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Algorithm 3: sparsify from [13]

Input: Ac: coarse-grid operator
A: fine-grid operator
P : interpolation
P̂ : injection
S: classical strength matrix
γ: sparse dropping threshold parameter

Output: Âc, a sparsified Ac

M = edges(P̂TAP + PTAP̂ ) {Edges in the minimal sparsity pattern}

N = ∅ {Edges to keep in Ac}

Âc = 0 {Initialize sparsified Ac}

for (Ac)i,j 6= 0 do

if (i, j) ∈M or
∣∣∣(Ac)i,j∣∣∣ ≥ γmaxk 6=i

∣∣∣(Ac)i,k∣∣∣
N ← N ∪ {(i, j), (j, i)} {Add strong edges or the required pattern}

for (Ac)i,j 6= 0 do

if (i, j) ∈ N
(Âc)i,j = (Ac)i,j

else
W = {k |Sj,k 6= 0, (i, k) ∈ N} {Find strong neighbors in the keep list}

for k ∈ W do

α =
|Sj,k|∑

m∈W |Sj,m| {Relative strength to k}

(Âc)i,k ← (Âc)i,k + α(Ac)i,j
(Âc)k,i ← (Âc)k,i + α(Ac)i,j
(Âc)k,k ← (Âc)k,k − α(Ac)i,j

Algorithm 3b: Diagonal Lumping – Alternative for loop (§ 3.1)

for (Ac)i,j 6= 0 do

1 ismax←
∣∣∣(Ac)i,j∣∣∣ = maxk 6=i |(Ac)ik| and (i, k) /∈ N ∀ k 6= i and

∑
j Ai,j = 0

if (i, j) ∈ N or ismax {Keep if entry is the single, maximum nonzero}

2 (Âc)i,j = (Ac)i,j
else {Otherwise add to the diagonal}

(Âc)i,i ← (Âc)i,i + (Ac)i,j

There is a trade-off between the communication requirements and the conver-
gence rate. Each entry in the matrix has a communication cost that is dependent
on the number of network links that the corresponding message travels in addition
to network contention. In addition, each entry in the matrix also influences conver-
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gence of AMG, with large entries generally having larger impact (although this is not
uniformly the case). Any entry that has an associated communication cost outweigh-
ing the impact on convergence should be removed. However, while it is possible to
predict this communication cost based on network topology and message size, the
entry’s contribution to convergence cannot be easily predetermined. When dropping
via non-Galerkin coarse grids, if the chosen drop tolerance is too large, too many
entries are removed and convergence deteriorates. Because the ideal drop tolerance
is problem dependent and cannot be predetermined, it is likely that the chosen drop
tolerance is suboptimal.

Figures 4a and 4b show the convergence and communication complexity, respec-
tively, of various AMG hierarchies for solving a 3D Poisson problem with the method
of non-Galerkin coarse grids. For both figures, the 27-point Laplacian was solved
on 8192 processes with 10, 000 degrees-of-freedom per process. The original Galerkin
hierarchy converges in the fewest number of iterations, but has the highest communica-
tion complexity. Non-Galerkin removes an ideal number of nonzeros from coarse-grid
operators (labeled ideal) when no entries are removed from the first coarse level, and
all successive levels have a drop tolerance of 1.0. In this case, the communication
complexity of the solver is greatly reduced with little effect on convergence. However,
if the first coarse level is also created with a drop tolerance of 1.0, essential entries
are removed (labeled too many). While the complexity of the hierarchy is further
reduced, the method fails to converge.
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(b) Number of MPI sends per level

Fig. 4: Sparsity is improved in the AMG hierarchy for the 27-Point Laplacian on 8192
processes with 10, 000 degrees-of-freedom per core. The time spent on middle levels
of the AMG hierarchy is decreased (right) with little change to the residual after each
iteration (left).

If a large drop tolerance is chosen in the non-Galerkin method, the effect on con-
vergence can be determined after one or two iterations of the solve phase. At this
point, if convergence is poor, eliminated entries can be re-introduced into the ma-
trix. However, with this method, convergence improvements cannot be guaranteed.
As shown in Algorithm 1, sparsifying on a level affects all coarser-grid operators.
Hence, adding entries back into the original operator does not influence the impact
of their removal on all coarser levels. Figure 5 shows how re-adding entries is inef-
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fective by plotting the required communication costs verses the achieved convergence
for both Galerkin and non-Galerkin AMG solve phases for the same 3D Poisson prob-
lem. The data set Non-Galerkin (added back) is generated by removing entries with a
drop tolerance of 1.0 (everything outside of M) on the first coarse-grid operator and
0.0 (retaining everything) on all successive levels. This results in a non-convergent
method. We then add these removed entries back into the first coarse-grid opera-
tor, but this does not reintroduce the entries which were removed from coarser grid
operators as a result of the non-Galerkin triple-matrix product PT` Â`P`. Figure 5
shows that this hierarchy requires little coarse-level communication after all entries
have been reinstated to the first coarse-grid operator. However as the required entries
are not added back into all coarser grid operators, the method still fails to converge.
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Fig. 5: Convergence vs. communication of Galerkin and non-Galerkin hierarchies for
the 27-point Poisson problem on 8192 processes, with 10, 000 degrees-of-freedom per
process. Relative residual per AMG iteration (black) vs the number of MPI sends per
iteration (red) (left), and (maximum) number of sends per level in AMG hierarchy
(right)

3. Sparse and Hybrid Galerkin approaches. In this section we present two
methods as alternatives to the method of non-Galerkin coarse grids. The methods con-
sist of forming the entire Galerkin hierarchy before sparsifying each operator, yielding
a lossless approach for increasing sparsity in the AMG hierarchy. The first method,
which is called the Sparse Galerkin method is described in Algorithm 4 (see Line 1).
Sparse Galerkin creates the entire Galerkin hierarchy as usual. The hierarchy is then
thinned as a post-processing step to remove relatively small entries outside of the
minimal sparsity pattern M = P̂TAP + PTAP̂ using sparsify.

The second method that we introduce is called Hybrid Galerkin since it combines
elements of Galerkin and Sparse Galerkin to create the final hierarchy. The method
is again lossless, and is outlined in Algorithm 4 (see Line 2). After the Galerkin
hierarchy is formed, small entries outside are removed, this time using a modified,
minimal sparsity pattern of M = P̂T ÂP + PT ÂP̂ .

The Sparse and Hybrid Galerkin methods retain the structure of the original
Galerkin hierarchy. Consequently, these methods introduce error only into relax-
ation and residual calculations. The remaining components of each V-cycle in the
solve phase (see amg solve), such as restriction and interpolation are left unmodified.
Therefore, the grid transfer operators do not depend on any sparsification, as shown
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Algorithm 4: sparse hybrid setup

Input: A0: fine-grid operator
max size: threshold for max size of coarsest problem
γ1, γ2, . . . drop tolerances for each level
sparse galerkin: Sparse Galerkin method
hybrid galerkin: Hybrid Galerkin method

Output: Â1, . . . , ÂL

A1, . . . , AL, P0, . . . , PL−1 = amg setup(A0, max size, False)
Â0 = A0

for `← 1 to L do
if sparse galerkin

1 Â`+1 = sparsify(A`+1, A`, P`, S`, γ`) {Increase using the Sparse Method}

else if hybrid galerkin

2 Â`+1 = sparsify(A`+1, Â`, P`, S`, γ`) {Increase using the Hybrid Method}

in Figure 6. Here, we see that the Sparse Galerkin method does not use the modified
(or sparsified) operators to create the next coarse-grid operator in the hierarchy. Con-
versely, Hybrid Galerkin uses the newly modified operator to compute the sparsity
pattern M for the next coarse-grid operator.

A0 P0

A1 P1

A2

(a) Galerkin

A0 P0

A1 Â1 P1

A2 Â2

(b) Non-Galerkin

A0 P0

A1 P1

A2

Â1

Â2

(c) Sparse Galerkin

A0 P0

A1 P1

A2

Â1

Â2

(d) Hybrid Galerkin

Fig. 6: Dependencies for forming each operator in the various AMG hierarchies. The
difference between Sparse and Hybrid Galerkin dependencies is highlighted in red.

The new Sparse Galerkin and Hybrid Galerkin methods reduce the per-iteration
cost in the AMG solve cycle as less communication is required by each sparse, coarse-
grid operator. However, high-energy error may also be relaxed at a slower rate,
yielding a reduction in the convergence factor. As a result, the solve phase is more
efficient when the reduction in communication outweighs the change in convergence
factor.

Similar to the method of non-Galerkin, it is difficult to predict the impact of
removing entries from Ac in Algorithm 3 on the relaxation process. However, as the
structure of the Galerkin hierarchy is retained, the convergence factor of the solve
phase can be controlled on-the-fly. In our approach, differences between Ac and Âc
are stored while forming the sparse approximations. Subsequently, if the conver-
gence factor falls below a tolerance, entries can be reintroduced into the hierarchy,
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allowing improvement of the convergence factor up to that of the original Galerkin
hierarchy (see Section 6).

3.1. Diagonal Lumping. A significant amount of work is required in Algo-
rithm 3 to improve the sparsity of each coarse operator. When forming non-Galerkin
coarse grids, this additional setup cost is hidden by the reduced cost of the triple
matrix product with the sparsified matrix PT ÂP . However, as the entire Galerkin
hierarchy is initially formed as usual in our new methods (Algorithm 4) the additional
work greatly reduces the scalability of the setup phase, as shown in Section 5.2. This
significant cost suggests using an alternative method for sparsification of coarse-grid
operators. When reducing the number of nonzeros from coarse-grid operators with
Sparse Galerkin or with Hybrid Galerkin, the structure of the Galerkin hierarchy
remains intact, allowing a more flexible treatment of increasing sparsity in the ma-
trix. For instance, one option is to remove entries by lumping to the diagonal rather
than strong neighbors, as described in Algorithm 3b. This variation of sparsify is
beneficial for several reasons, including: a much cheaper setup phase when compared
to Algorithm 3; potential to reduce the cost of the solve phase; reduced storage con-
straints for adaptive solve phases (see Algorithm 5); and retaining positive-definiteness
of coarse operators.

Algorithm 3b replaces the for loop in Algorithm 3. For each nonzero entry in the
matrix, the algorithm first checks if the entry is the maximum element in the row and
if all other entries in the row are selected for removal (see Line 1). In this case, the
nonzero entry is not removed if there is a zero row sum.

The method of diagonal lumping (Algorithm 3b) results in a cheaper setup phase
than Algorithm 3. The original non-Galerkin sparsify requires each removed en-
try to be symmetrically lumped to significant neighbors. As a result, the process
of calculating the associated strong connections requires a large amount of compu-
tation through a costly loop over neighbors of neighbors. Furthermore, to maintain
symmetry, all matrix entries that are not stored locally must be updated, requiring
a significant amount of interprocessor communication. Lumping these entries to the
diagonal eliminates both the computational and communication complexities.

Eliminating the requirement of lumping to strong neighbors yields potential for
removing a larger number of entries from the hierarchy, further reducing the commu-
nication costs of the solve phase. The original version of Algorithm 3 requires that
an entry must have strong neighbors to be removed, as its value is lumped to these
neighbors.

While relaxing the restrictions of the original non-Galerkin sparsify provides
more opportunity to remove entries, the diagonal lumping also negatively influences
convergence in some cases. Indeed, the energy of the operator can be increased as a
result of the diagonal lumping, leading to a decrease in (spectral) equivalence with
the original operator. To mitigate this, if convergence suffers, entries can be easily
reintroduced into the hierarchy, improving convergence during the solve phase.4 As
removed entries are only added to the diagonal, the storage of both the sparse matrix
along with removed entries is minimal. In addition, these entries can be restored by
inserting their values to the original positions, and subtracting these values from the

4Another mitigating factor occurs when diagonal lumping is done after the construction of the
hierarchy, when Â` will be used only for relaxation. At this point, Â` must only effectively damp high
energy modes and leave low energy modes largely untouched. Since diagonal lumping of relatively
small entries (as controlled by γ) largely impacts spectral equivalence for low energy modes, this
mitigates any effect from reduced spectral equivalence.
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associated diagonal entries as shown in Algorithm 5. The process of reintroducing
these entries requires no interprocessor communication as well as a low amount of
local computational work.

Diagonal lumping also preserves matrix properties such as symmetric positive-
definiteness (SPD). As described in the following theorem, if the sparsity of a diago-
nally dominant SPD matrix is increased using diagonal lumping, the resulting matrix
remains SPD. Consequently, Sparse and Hybrid Galerkin with diagonal lumping can
be used in preconditioning many methods such as conjugate gradient. It is important
to note, that while SPD matrices are an attractive property for AMG, AMG meth-
ods do not guarantee diagonal dominance of the coarse-grid operators. Yet, in many
instances this property is preserved, for example for more standard elliptic operators.

Theorem 1. Let A be SPD and diagonally dominant. If Â is produced by Algo-
rithm 3b, then it is symmetric positive semi-definite and diagonally dominant.

Proof. Let A be SPD with diagonal dominance,

(2) |Ai,i| ≥
∑
k 6=i

|Ai,k| ,∀i.

Symmetry of Â is guaranteed from the symmetry of both A and the N from Algo-
rithm 3. For all off-diagonal entries (i, j), (j, i) ∈ N ,

(3) Âi,j = Ai,j = Aj,i = Âj,i,

by Line 2 in Algorithm 3b and the symmetry of A.
The positive-definiteness is guaranteed by the diagonal dominance and a Gersh-

gorin disc argument. The proof proceeds by starting with the matrix A and then
considering the change made to A by the elimination of each entry. Initially, all the
Gershgorin discs of A are strictly on the right-side of the origin, thus implying that all
eigenvalues are non-negative. Then, assume that we eliminate some arbitrary entry
Ai,j , (i, j) ∈ N . This results in row i being updated

(4) Ai,i ← Ai,i +Ai,j and Ai,j ← 0

If Ai,j > 0, then the center of the Gershgorin disc is shifted to the right, and the radius
shrinks, thus keeping the disc to the right of the origin and preserving definiteness.
If Ai,j < 0, then the center of the disc is shifted to the left by |Ai,j |, but the radius
of the disc also shrinks by |Ai,j |. This also keeps the disc to the right of the origin
and preserves semi-definiteness. Furthermore, since each disc is never shifted to the
left half plane, diagonal dominance is also preserved. The proof then proceeds by
considering all of the entries to be eliminated.

Remark 3.1. If any row of A is strictly diagonally dominant, as often happens
with Dirichlet boundary conditions, then Â will be positive definite. Essentially, Al-
gorithm 3b never shifts a Gershgorin disc to the left, so Â can have no 0 eigenvalue.

4. Parallel Performance. In this section we use a parallel performance model
to illustrate the per-level costs associated with each of the six methods:

Galerkin - Classic coarsening in AMG, as outlined in Algorithm 1;
Non-Galerkin - The base algorithm presented in [13];
Sparse Galerkin - The new Algorithm 4 with sparse galerkin and full lumping

from Algorithm 3;
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Sparse Galerkin (Diag) - The new Algorithm 4 with sparse galerkin and diag-
onal lumping from Algorithm 3b;

Hybrid Galerkin - The new Algorithm 4 with hybrid galerkin and full lumping
from Algorithm 3; and

Hybrid Galerkin (Diag) - The new Algorithm 4 with hybrid galerkin and diag-
onal lumping from Algorithm 3b.

The solve phase of AMG (see Algorithm 2) is largely comprised of sparse matrix-
vector multiplication, thus we model each method by assessing the cost of performing
a SpMV on each level of the hierarchy. We focus on the operators A`, as the work
required for this matrix is more costly than the restriction and interpolation opera-
tions. Specifically, we employ an α–β model to capture the cost of the parallel SpMV
based on the number of nonzeros in A. We denote p as the number of processors, α
as the latency or startup cost of a message, and β as the reciprocal of the network
bandwidth [15, 16]. In addition, nnzp represents the average number of nonzeros local
to a process, while sp and np are the maximum number of MPI sends and message size
across all processors. Finally, we use c to represent the cost of a single floating-point
operation. With this we model the total time as

(5) T = 2 c nnzp + max
p

sp(α+ βnp).

For the model parameters above we use the Blue Waters supercomputer at the Univer-
sity of Illinois at Urbana-Champaign [1, 7]. The latency and bandwidth were measured
through the HPCC benchmark [19], yielding α = 1.8× 10−6 and β = 1.8× 10−9.
Since the achieved floprate depends on matrix size, we determine the value of c by
timing the local SpMV. Specifically, letting nnzlocal be the number of nonzeros local
to the processor and Tlocal the time to perform the local portion of the SpMV, we
compute c = Tlocal/2nnzlocal for each matrix in the hierarchy.

The minimal per-level cost associated with the non-Galerkin and Sparse/Hybrid
Galerkin methods occurs when entries are removed with a drop tolerance of γ =
1.0. Using the model, (5), this is highlighted in Figure 7 for both the Laplace and
rotated anisotropic diffusion problems (a full description of these problems is given
in Section 5). We see that both non-Galerkin and Hybrid Galerkin have potential
to minimize the per-level cost. However, when the per-level cost is minimized, the
convergence of AMG often suffers. Therefore, less-aggressive drop tolerances such as
γ < 1.0 may remove fewer entries, increasing the per-level cost, but due to better
convergence will improve the overall cost of the solve phase. Indeed for the rotated
anisotropic diffusion problem, this is the case, where we reduce γ at fine levels in the
hierarchy in order to retain convergence (not shown for brevity).

5. Parallel results for Sparse and Hybrid Galerkin. In this section we
highlight the parallel performance of the Sparse and Hybrid Galerkin methods. We
consider scaling tests on the familiar 3D Laplacian since this is a common multigrid
problem used to establish a baseline. In order to test problems where AMG conver-
gence is suboptimal, we consider a 2D rotated anisotropic diffusion problem. Finally,
we test our methods on a suite of matrices from the Florida Sparse Matrix Collection.
All computations were performed on the Blue Waters system at the University of
Illinois at Urbana-Champaign [1]. Each method was implemented and solved with
hypre [2, 17], using default parameters unless otherwise specified. In summary, we
compare the solve and setup times for the six methods considered in Section 4 while
preconditioning a Krylov method such as CG or GMRES in each test.
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Fig. 7: Modeled minimal cost of a single SpMV on each level of the AMG hierarchy
for Laplace (left) and rotated anisotropic diffusion (right), for an aggressive drop
tolerance of 1.0 on each level.

The drop tolerances for each method vary by level, using a combination of 0.0,
0.01, 0.1, and 1.0 across the coarse levels. Six combinations of these drop tolerances
are tested for the various test cases, and the series yielding the minimum solve time
for each is selected. Note: At 100, 000 cores, the best drop tolerances from the second
largest run size are used due to large costs associated with running 6 drop tolerances
at this core count. Details of the drop tolerances used in all the below tests are found
in the Supplemental Materials due to length.5

Generally, the drop tolerances are aggressive for the simple isotropic 3D Laplacian
example, where for instance in Figures 8 and 9, the Sparse Galerkin (Diag) method
used the values of [0.0, 0.1], i.e., no dropping on the first coarse level and then 0.1
on all subsequent levels. For the more complex examples such as rotated anisotropic
diffusion, the drop tolerances are less aggressive and usually begin on coarser levels.
For instance in Figures 8 and 9, the Sparse Galerkin (Diag) method used values of
[0.0, 0.0, 0.0, 0.1], i.e., no dropping occurs until the third coarse level, where 0.1 is used
from that point onward on all coarser levels. Overall, the drop tolerance is similar to
other multigrid parameters, such as the strength-of-connection drop tolerance. Some
experimentation with a problem type is required, but thereafter a general, conservative
parameter choice can be made for subsequent use.

We consider the diffusion problem

(6) −∇ ·K∇u = 0,

with two particular test cases for our simulations. Also, as problems with less structure
result in increased density on coarse levels, we consider a subset from the Florida
sparse matrix collection. The test problems are as follows:

Laplace - Here, we use K = I on the unit cube with homogeneous Dirichlet bound-
ary conditions. Q1 finite elements are used to discretize the problem using a uni-
form mesh, leading to a familiar 27-point stencil. The preconditioner formed for

5In addition, the modifications to hypre v2.11.0 are stored at https://github.com/lukeolson/
hypre/releases/tag/SISC-sparse-hybrid-galerkin and https://github.com/lukeolson/hypre/releases/
tag/SISC-sparse-hybrid-galerkin-adaptive.

https://github.com/lukeolson/hypre/releases/tag/SISC-sparse-hybrid-galerkin
https://github.com/lukeolson/hypre/releases/tag/SISC-sparse-hybrid-galerkin
https://github.com/lukeolson/hypre/releases/tag/SISC-sparse-hybrid-galerkin-adaptive
https://github.com/lukeolson/hypre/releases/tag/SISC-sparse-hybrid-galerkin-adaptive
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the 3D Laplacian uses aggressive coarsening (HMIS) and distance-two (extended
classical modified) interpolation. The interpolation operators were formed with a
maximum of five elements per row, and hybrid symmetric Gauss-Seidel was the
relaxation method.

Rotated Anisotropic Diffusion - In this case, we consider a diffusion tensor with
homogeneous Dirichlet boundary conditions of the form K = QTDQ, where Q is
a rotation matrix and D is a diagonal scaling defined as

(7) Q =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
D =

(
1 0
0 ε

)
.

Q1 finite elements are used to discretize a uniform, square mesh. In the following
tests we use θ = π

8 and ε = 0.001. In each case, the preconditioner uses Falgout
coarsening [10], extended classical modified interpolation and hybrid symmetric
Gauss-Seidel.

Florida Sparse Matrix Collection - We consider a subset of all real, symmetric,
positive definite matrices from the Florida sparse matrix collection with size over
1,000,000 degrees-of-freedom. In addition we consider only the cases where GM-
RES preconditioned with Galerkin AMG converges in fewer than 100 iterations.
Each problem uses HMIS coarsening and so-called extended+i interpolation if
possible. In some cases, however, Galerkin AMG does not converge with these
options; in these cases Falgout coarsening and modified classical interpolation
are used. Relaxation for all systems is hybrid symmetric Gauss-Seidel. Note:
When necessary for convergence, some hypre parameters, such as the minimum
coarse-grid size and strength tolerance, vary from the default.

The following results demonstrate that the diagonally lumped Sparse and Hybrid
Galerkin methods are able to perform comparably to non-Galerkin. Non-Galerkin
and Sparse/Hybrid Galerkin all significantly reduce the per-iteration cost by reducing
communication on coarse levels. Since the method of non-Galerkin is multiplicative
in construction, the setup times are often much lower in comparison to standard
Galerkin. However, Sparse and Hybrid do not observe this benefit since they are
constructed in a post-processing step. While the per-iteration work is decreased for all
methods, the convergence suffers for the case of rotated anisotropic diffusion problems
with non-Galerkin at large scales. However, Sparse and Hybrid Galerkin converge at
rates similar to the original Galerkin hierarchy, yielding speedup in total solve times.
Moreover, in a strong scaling study, we observe that Hybrid Galerkin is competitive,
particularly at large core counts.

5.1. Improving sparsity in AMG Hierarchies. The significant number of
nonzeros on coarse levels creates large, relatively dense matrices near the middle of
the AMG hierarchy, yielding large communication costs for each SpMV performed on
these levels. As the solve phase of AMG consists of many SpMVs on each level of the
hierarchy, the time spent on coarse levels can increase dramatically. Sparse, Hybrid,
and non-Galerkin can all reduce both the cost associated with communication as well
as the time spent on each level during a solve phase.

Figure 8 shows the time spent on each level of the hierarchy during a single
iteration of AMG, for both test cases with 10,000 degrees-of-freedom per core using
8192 cores. Both the method of non-Galerkin coarse grids, as well as the Sparse and
Hybrid Galerkin methods, reduce the time required on levels near the middle of the
hierarchy. Non-Galerkin has a larger impact on the time spent on middle levels of the
hierarchy for the Laplace problem than Sparse and Hybrid Galerkin. However, for the
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anisotropic problem, diagonally-lumped Hybrid Galerkin reduces level-time similarly
to non-Galerkin. This is due to a large reduction in the number of messages required
in each SpMV as shown in Figure 9. The reduction in total size of all messages
communicated is relatively small.
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Fig. 8: Time spent on each level of the AMG hierarchy during a single iteration of
the solve phase for Laplace (left) and Rotated Anisotropic Diffusion (right),
each with 10,000 degrees-of-freedom per core.
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Fig. 9: Number of sends required to perform a single SpMV on each level of the AMG
hierarchy for: Laplace (left) and Rotated Anisotropic Diffusion (right), each
with 10,000 degrees-of-freedom per core.

The increase in time spent on each level, as well as the associated communication
costs of these levels, becomes more pronounced at higher processor counts in a strong
scaling study. Figure 10 illustrates this by plotting the per-level times required during
a single iteration of AMG, as well as the number of messages communicated during
a SpMV for the rotated anisotropic diffusion problem with 1,250 degrees-of-freedom
per core using 8192 cores. Compared with the 10,000 degrees-of-freedom per core in
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Figures 8 and 9 there is a sharper increase in time required for levels near the middle
of the hierarchy due to the increasing dominance of communication complexity.
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Fig. 10: For each level of the AMG hierarchy, time per iteration of AMG (left) and
number of messages sent during a single SpMV (right) for the Rotated Anisotropic
Diffusion problem with 1,250 degrees-of-freedom per core.

5.2. Costs of Weakly Scaled Setup Phases. Each sparsification method
can lead to reduced communication costs in the middle of the hierarchy. However,
removing insignificant entries from coarse-grid operators requires additional work in
the setup phase. In the non-Galerkin method, setup times are reduced since the
increased sparsity is used directly in the triple-matrix product required to form each
successive coarse-grid operator. However, for the new methods, Sparse and Hybrid
Galerkin, the entire Galerkin hierarchy is first constructed so that the sparsify process
on each level requires additional work. Figure 11 shows the times required to setup
an AMG hierarchy for rotated anisotropic diffusion, with Laplace setup times scaling
in a similar manner. While there is a slight increase in setup cost associated with the
Sparse and Hybrid Galerkin hierarchies, this extra work is nominal. Therefore, while
the majority of this additional work is removed when using diagonal lumping, the
differences in work required in the setup phase between these two lumping strategies
is insignificant for the problems being tested.

5.3. Weak Scaling of GMRES Preconditioned by AMG. In this section
we investigate the weak scaling properties of the methods. Figure 12 shows both the
average convergence factor and total time spent in the solve phase for a weak scaling
study with rotated anisotropic diffusion problems at 10,000 degrees-of-freedom per
core using GMRES preconditioned by AMG. GMRES is used over CG because Algo-
rithm 3 guarantees symmetry but not positive-definiteness of the preconditioner. In
many cases, positive-definiteness is preserved, but when using more aggressive drop
tolerances, we have observed this property being lost. While the convergence of both
diagonally-lumped Sparse and Hybrid Galerkin remain similar to that of Galerkin,
the non-Galerkin method converges more slowly. Therefore, while non-Galerkin and
diagonally-lumped Hybrid Galerkin yield similar communication requirements, GM-
RES preconditioned by Hybrid Galerkin performs significantly better as fewer itera-
tions are required.
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Remark 5.1. With the chosen drop tolerances, non-Galerkin does not converge
for this anisotropic problem at 100, 000 cores. In this case, nothing was dropped from
the first three coarse levels of the hierarchy. On the fourth coarse level a drop tolerance
of 0.01 was used, and the fifth was sparsified with a tolerance of 0.1. The remaining
levels were sparsified with a drop tolerance of 1.0. This was determined to be the best
tested drop tolerance sequence for smaller run sizes, and multiple drop tolerance se-
quences were not tuned at this large problem size due to the significant costs. However,
a better drop tolerance could yield a convergent non-Galerkin method at this scale.

The efficiency of weakly scaling to p processes is defined as Ep = T1

Tp
, where T1 is

the time required to solve the problem on a single process and Tp is the time to solve
on p processes. The efficiency of solving weakly scaled rotated anisotropic diffusion
problems with non-Galerkin, Sparse Galerkin, and Hybrid Galerkin, relative to the
efficiency of Galerkin AMG, are shown in Figure 13. While both the original and
diagonally-lumped Sparse and Hybrid Galerkin methods scale more efficiently than
Galerkin, the poor convergence of non-Galerkin on large run sizes yields a reduction
in relative efficiency.

5.4. Strong Scaling of GMRES Preconditioned by AMG. We next con-
sider the rotated anisotropic diffusion system with approximately 10, 240, 000 un-
knowns using cores ranging from 128 to 100, 000. Therefore, the simulation is re-
duced from 80, 000 degrees-of-freedom per core when run on 128 cores, to just over
100 degrees-of-freedom per core on 100, 000 cores. Computation dominates the total
cost of solving a problem partitioned over relatively few processes, as each process
has a large amount of local work. However, as the problem is distributed across an
increasing number of processes, the local work decreases while communication require-
ments increase. Therefore, the time required to solve a problem is reduced with strong
scaling, but only to the point where communication complexity begins to dominate.
The efficiency of strongly scaling to p processes is defined as Ep = T1

pTp
. Figure 14

shows the efficiency of solving a strongly scaled rotated anisotropic diffusion problem
with GMRES preconditioned by the various sparse methods. In each case we observe
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Fig. 12: Convergence factors (left) and times (right) for weak scaling of Rotated
Anisotropic Diffusion (10,000 degrees-of-freedom per core), solved by precondi-
tioned GMRES. For large problem sizes, non-Galerkin AMG does not converge, and
timings indicate when the maximum iteration count was reached.
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Fig. 13: Efficiency of solving weakly scaled Rotated Anisotropic Diffusion at
10,000 degrees-of-freedom per core with various methods, relative to that of the
Galerkin hierarchy.

improvements over standard Galerkin.
A strong scaling study is also performed on the subset of matrices from the

Florida sparse matrix collection. These problems were tested on 64, 128, 256, and
512 processes. Figure 15 shows the time required to perform a single V-cycle for each
of the matrices in the subset, relative to the time required by Galerkin AMG. All
methods reduce the per-iteration times for each matrix in the subset. Furthermore,
the total time required to solve each of these matrices is also reduced, as shown in
Figure 16. While Sparse Galerkin provides some improvement, the Hybrid and non-
Galerkin methods are comparable, particularly at high core counts.
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Fig. 14: Efficiency of non-Galerkin and Sparse/Hybrid Galerkin methods in a strong
scaling study, relative to Galerkin AMG for Rotated Anisotropic Diffusion.

5.5. Diagonal Lumping Alternative and PCG. Diagonal lumping retains
positive definiteness of diagonally-dominant coarse-grid operators as described in The-
orem 1. Therefore, as the preconditioned conjugate gradient (PCG) method requires
both the matrix and preconditioner to be symmetric and positive-definite, the Laplace
and anisotropic diffusion problems are solved by conjugate gradient preconditioned by
the diagonally-lumped Sparse and Hybrid Galerkin hierarchies. Figure 17 shows the
solve phase times for solving the weakly scaled rotated anisotropic diffusion problem
with PCG. As with GMRES, both the Sparse and Hybrid Galerkin preconditioners
decrease the time required in the AMG solve phase during a weak scaling study.

6. Adaptive Solve Phase. The previous results describe the case where good
drop tolerances were known a priori for sparsify. However, as the appropriate drop
tolerance changes with problem type, problem size, and even level of the AMG hier-
archy, a good drop tolerance is often not easily realized. When the drop tolerance is
too small, few entries are removed from the hierarchy and the communication com-
plexity remains the same. However, if the drop tolerance is too large, the solver is
non-convergent, as described in Section 2.1.

In this section we consider an adaptive method that attempts to add entries back
into the hierarchy as a deterioration in convergence is observed. This is detailed in
Algorithm 5. The algorithm initializes a Sparse or Hybrid Galerkin hierarchy and
proceeds by executing k iterations of a preconditioned Krylov method — e.g. PCG.
If the convergence is below a tolerance, the coarse levels are traversed until a coarse
grid operator is found on which entries were removed with a drop tolerance greater
than 0.0. Entries are then added back to this coarse-grid operator, reducing the drop
tolerance by a factor of 10. Any new drop tolerance below γmin = 0.01 is rounded
down to 0.0. This continues until entries have been reintroduced into s coarse-grid
operators. At this point, the Krylov method continues, using the most recent value
for x unless the previous iterations diverged from the true solution.

This entire process is then repeated until convergence. The adaptive solve phase
requires additional iterations over Galerkin AMG, as initial iterations of this method
may not converge. However, the goal of this solver is to guarantee convergence sim-
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Fig. 15: Time (relative to Galerkin) per iteration for each matrix in the Florida Sparse
Matrix Collection, using p = 64, 128, 256, and 512.

ilar to Galerkin AMG. Speed-up over Galerkin AMG is still dependent on choosing
reasonable initial drop tolerances.

If the Krylov method is not flexible, such as PCG or GMRES, then it must be
restarted after the preconditioner has been edited. On the other hand, a flexible
method, such as FGMRES, would not have to be restarted, but requires greater
memory storage (and possibly also more computational work) than PCG. While the
new algorithms are agnostic to the Krylov scheme, we use restarted PCG in order to
directly compare schemes.

Example 6.1. As an example, consider the case of a hierarchy with 6 levels using
drop tolerances of [0, 0.01, 0.1, 1.0, 1.0, 1.0] — i.e., Â1 retains all entries from A1,
Â2 and Â3 result from sparsify with γ = 0.01 and γ = 0.1, etc. Suppose that
adaptive solve with k = 3 and s = 2 results in 3 iterations of PCG and a large
residual. The adaptive solve finds the first level containing a sparsified coarse grid
matrix, namely Â2. The drop tolerance on this level is changed from 0.01 to 0.0, and
the original coarse matrix A2 is sparsified with the new drop tolerance. Furthermore,
since s = 2 the drop tolerance on level 3 is reduced from 0.1 to 0.01, and A3 is also
sparsified. PCG then restarts with the new hierarchy. If convergence continues to
suffer after 3 iterations, the hierarchy is updated again, but since Â2 has γ2 = 0.0,
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Fig. 16: Time (relative to Galerkin) per AMG solve for each matrix in the Florida
Sparse Matrix Collection, using p = 64, 128, 256, and 512.
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Fig. 17: Weak scaling solve time for Rotated Anisotropic Diffusion, solved by
PCG preconditioned by various AMG hierarchies.
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Algorithm 5: adaptive solve

Input: A, b, x0

Â1, . . . , ÂL Sparse/Hybrid Galerkin coarse grid matrices
A1, . . . , AL original Galerkin coarse grid matrices
P0, . . . , PL−1

k PCG iterations before convergence test
s AMG levels per update
γ0, . . . , γL sparsification drop tolerance used at each level
tol convergence tolerance
sparse galerkin Sparse Galerkin method
hybrid galerkin Hybrid Galerkin method

Output: x

x = x0

r0 = b−Ax0

while ‖r‖/‖r0‖ ≤ tol

M = preconditioner(amg solve, Â1, . . . , ÂL, P0, . . . , PL−1)
x = PCG(A, b, x, k,M) {Call k steps of preconditioned CG}

r = b−Ax
if ‖r‖
‖r0‖ ≤ tol
continue

else
for ` = 0, . . . , L do

if γ` > 0
`start ← ` {Find finest level that uses dropping}

for ` = `start . . . `start + s do

γ` =

{
γ`
10 , if γ`

10 > γmin

0, otherwise
{Determine new dropping parameter}

{γmin is the min(γ0 . . . γL)}

if sparse galerkin {Re-add entries at the new dropping tolerance}
Â` =sparsify(A`, A`−1, P`−1, S`−1, γ`)

else if hybrid galerkin {Re-add entries at the new dropping tolerance}

Â` =sparsify(A`, Â`−1, P`−1, S`−1, γ`)

entries are reintroduced into coarse matrices Â3 and Â4 instead.

Using Algorithm 5, Figure 18 shows both the relative residual of the system after
each iteration as well as the communication costs of PCG using three different AMG
hierarchies: standard Galerkin, Sparse Galerkin with diagonal lumping and aggressive
dropping, and Sparse Galerkin with diagonal lumping modified with adaptivity. For
the adaptive case, we purposefully choose an overly aggressive initial drop tolerance
so that entries can be added back multiple times and one coarse level at a time to
show the effect on convergence and communication. Initially, when the drop tolerance
is aggressive, the associated communication costs are low, but the resulting PCG it-
erations do not converge; this provides a baseline. As sparse entries are reintroduced
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into the hierarchy, convergence improves, while only slightly increasing the associated
communication cost. When entries are reintroduced into the hierarchy, the precondi-
tioner for PCG changes, and hence, the method must be restarted. After restarting
the method, convergence improves.
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Fig. 18: Relative residual (black) and number of MPI sends (red) per iteration
when solving the Laplace problem with: (1) PCG using Galerkin AMG; (2) Hybrid
Galerkin with aggressive dropping (labeled Too Many); (3) Hybrid Galerkin solved
with Algorithm 5, using k = 3, s = 1, and γ0 . . . γL set to the same drop tolerances
as the aggressive case.

7. Conclusion. We have introduced a lossless method to reduce the work re-
quired in parallel algebraic multigrid by removing weak or unimportant entries from
coarse-grid operators after the multigrid hierarchy is formed. This alternative to
the original method of non-Galerkin coarse grids is similarly capable of reducing the
communication costs on coarse levels, yielding an overall reduction in solve times.
Furthermore, this method retains the original Galerkin hierarchy, allowing many of
the restrictions of non-Galerkin to be relaxed. As a result, removed entries are easily
lumped directly to the diagonals, greatly reducing setup costs, while also reducing
communication complexity during the solve phase. Furthermore, as entries are added
to the diagonal, entries removed from the matrix are stored and adaptively reintro-
duced into the hierarchy if necessary for convergence. Hence, the trade-off between
convergence and the communication costs is controlled at solve-time with little addi-
tional work.
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